
L. FELIPE PERRONE

CSCI 202 Research Methods

Exploring and Experimenting with Simulation

A static model
Predicting profits for furniture sales

Time has no bearing on this model

A static model
Predicting profits for furniture sales

This one is on Moodle:
Spreadsheet simulation

What is …

•a random number generator?
•a pseudo-random number generator?

Why should we need randomness?

“Real” random numbers
There is entropy in nature. If you can identify a
source of entropy, you can “mine” random
numbers from it.

white noise

Computers are deterministic…
If computers are fully deterministic, you need to
do some work to get them to give you random
numbers…

In Linux, look to /dev/random for random
numbers. (You cannot “control” them.)

https://en.wikipedia.org/wiki//dev/random

Pseudo-random number generators (PRNGs)
COMPUTING PRACTICES

Edgar H. Sibley
Panel Editor

Practical and theoretical issues are presented concerning the design,
implementation, and use of a good, minimal standard random number
generator that will port to virtually all systems.

RANDOM NUMBER GEUERATORS:
GOOD ONES ARE HARD TO FIN

STEPHEN K. PARK AND KEITH W. MILLER

An important utility that digital computer systems
should provide is the ability to generate random num-
bers. Certainly this is true in scientific computing
where many years of experience has demonstrated the
importance of access to a good random number genera-
tor. And in a wider sense, largely due to the ency-
clopedic efforts of Donald Knuth [18], there is now a
realization that random number generation is a concept
of fundamental importance in many different areas of
computer science. Despite that, the widespread adop-
tion of good, portable, industry standard software for ran-
dom number generation has proven to be an elusive
goal. Many generators have been written, most of them.
have demonstrably non-random characteristics, and
some are embarrassingly bad. In fact, the current state
of random number generation software is accurately
described by Knuth [18, p. 1761 who advises “. . . look
at the subroutine library of each computer installation
in your organization, and replace the random number
generators by good ones. Try to avoid being too shocked
at what you find.”

Knuth’s advice applies equally well to most recently
published computer science textbooks, particularly
those written for the undergraduate market. Indeed,
during the preparation of this article we reviewed more
than 50 computer science textbooks that contained soft-
ware for at least one random number generator. Most of
these generators are unsatisfactory.

This article was motivated by practical software con..

0 1988 ACM 0001.0782/88/1000-1192 51.50

siderations developed over a period of several years
while teaching a graduate level course in simulation.
Students taking this course work on a variety of sys-
tems and their choices typically run the gamut from
personal computers to mainframes. With Knuth’s ad-
vice in mind, one important objective of this course is
for all students to write and use implementations of a
good, minimal standard random number generator that
will port to all systems. For reasons discussed later, this
minimal standard is a multiplicative linear congruen-
tial generator [18, p. lo] with multiplier 16807 and
prime modulus P - 1. As it turns out, porting this
random number generator (or any other for that matter)
to a wide variety of systems is not as easy as it may
seem. The issues involved are discussed later in this
article.

The body of this article is organized into four sec-
tions. In the first, we present the rationale for our
choice of a minimal standard generator. We believe
that this is the generator that should always be used-
unless one has access to a random number generator
known to be better. In the second section we demon-
strate how to implement the minimal standard in a
high-level language on a variety of systems. The third
section presents theoretical considerations (and imple-
mentation details in support of the discussion in the
previous sections. Finally, in the last section, we pre-
sent selected examples of unsatisfactory generators that
have either appeared in recently published (post-1980)
computer science textbooks or are currently supplied
by popular programming environments.

1192 Communications of the ACM October 1988 Volume :I2 Number 10

WHAT MAKES A PRNG
“GOOD” ?

Pseudo-random number generator

Zi = (aZi-1 + c) % m

Z0 = seed
a, c, and m = carefully chosen constants

{Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk,…}

k = period

LINEAR CONGRUENTIAL GENERATOR

LEHMER GENERATOR

Pseudo-random number generator

Zi = (aZi-1 + c) % m

Z0 = seed
a, c, and m = carefully chosen constants

{Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk,…}

k = period

LINEAR CONGRUENTIAL GENERATOR

LEHMER GENERATOR

SAME SEED, SAME SEQUENCE

Pseudo-random number generator

Zi = (aZi-1 + c) % m

Z0 = seed
a, c, and m = carefully chosen constants

{Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk,…}

k = period

LINEAR CONGRUENTIAL GENERATOR

LEHMER GENERATOR

THIS IS VERY BASIC. YOU CAN FIND
MUCH BETTER PRNGS OUT THERE.

What is a random variate?
•Bernoulli (discrete)
•Binomial (discrete)
•Geometric (discrete)
•Equilikely (discrete)
•Uniform (continuous)
•Normal or Gaussian (continuous)
•Exponential (continuous)

Bernoulli(p)
Two possible outcomes: “success" (X=1) and
failure (X=0).

Pr{X=1} = x
Pr{X=0} = 1-x

0.0

1.0

0 1

p=0.8

0.5

Range = [0,1]

Bernoulli(p)
Two possible outcomes: “success" (X=1) and
failure (X=0).

Pr{X=1} = x
Pr{X=0} = 1-x

0.0

1.0

0 1

p=0.8

0.2

0.8

Range = [0,1]

Equilikely(a,b)
Possible values are {a, a+1, a+2, …, b}
Range = [a,b]

Pr{X=i} = ?

0.0

1.0

0 1

0.2

2 3 4 5

0 10 20 30 40
0.

00
0.

06

x

db
in

om
(x

, 6
0,

 1
/2

)

Binomial(n, p)
Repeat a Bernoulli(p) experiment n times and
count the number of successes.
What is the range of Binomial(n,p)?
Pr{X=x} = ?

SSS…SFF… F
x n-x

0 5 10 15

0.
0

0.
2

0.
4

x
dg

eo
m

(x
, 0

.5
)

Geometric(p)
Repeat a Bernoulli(p) experiment until you have
a first successes; count the number of failures
before you see that success.
What is the range of Geometric(p)?
Pr{X=x} = ?

FF… FS
x

Uniform(a,b)
a = start
b = end

3 4 5 6 7 8

0.
15

0.
25

x

du
ni

f(x
, 3

, 8
)

f(x) = probability density function
F(x) = cumulative distribution function

Uniform(a,b)

3 4 5 6 7 8

0.
15

0.
25

x

du
ni

f(x
, 3

, 8
)

f(x) = 1
b-a

F(x) = x-a
b-a

, a < x < b

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

x

dn
or

m
(x

, 2
, 0

.5
)

Normal(m,s)
m = mean
s = standard deviation
What is the range of
Normal(m,s)?

0 2 4 6 8 10

0.
0

1.
0

x

de
xp

(x
, 1

.5
)

Exponential(r)
r = rate

The Tree-body Problem

M3M2

M1

The Tree-body Problem

M3M2

M1What do you gain by
simulating this?

The Tree-body Problem

M3M2

M1What does the model
need to capture?

The Tree-body Problem

M3M2

M1

The Tree-body Problem

M3M2

M1What defines each
simulation experiment?

The Tree-body Problem

M3M2

M1Where is the randomness
in this model?

The M/M/1 Queue

S

Wλ cust/sec
µ cust/sec

M/M/1

What in the world is
captured in this
abstraction?

The M/M/1 Queue

S

Wλ cust/sec
µ cust/sec

M/M/1

What do you gain by
simulating this?

The M/M/1 Queue

S

Wλ cust/sec
µ cust/sec

M/M/1

What do you gain by
simulating this?

L =
�
µ

1� �
µ

W =
1

µ� �

Related Models

S

Wλ cust/sec
µ cust/sec

G/G/1

Related Models

S

S

…
S

Related Models

S

S

…

S

Aircraft Boarding

Aircraft Boarding

What do you gain by simulating this?

Aircraft Boarding

Where is the randomness in this model?

Aircraft Boarding

What do you learn from each simulation experiment?

