

A static model

Predicting profits for furniture sales

Simulation Model for Special Promotion Furniture Sale			fixed by contract
			input data
Stock ordered (S):	3000		calculated data
Unit cost for stock (C):	\$175.00		
		Distribu	Parameters
		Lower	Upper
Demand within first 8 weeks (V):	2667	500	3500
Sales within first 8 weeks (V):	2667		
Initial price (R):	\$251	200	300
Sales after first 8 weeks (S-V):	333		
Discount (D):	0.2		
Sale price (R*D):	0.5		
Profit (P):	\$144,343		
Note: Google Sheets refresh on browser reload command			

Astatic model

Predicting profits for furniture sales

This one is on Moodle: Spreadsheet simulation

What is ...

-a random number generator?
-a pseudo-random number generator?

Why should we need randomness?

"Real" random numbers

There is entropy in nature. If you can identify a source of entropy, you can "mine" random numbers from it.

Computers are deterministic...

If computers are fully deterministic, you need to do some work to get them to give you random numbers...

In Linux, look to /dev/random for random numbers. (You cannot "control" them.)

Pseudo-random number generators (PRNGs)

Practical and theoretical issues are presented concerning the design, implementation, and use of a good, minimal standard random number generator that will port to virtually all systems.

RANDOM NUMBER GENERATORS: GOOD ONES ARE HARD TO FIND

STEPHEN K. PARK AND KEITH W. MILLER

WHAT MAKES A PRNG "GOOD"?

siderations developed over a period of several years while teaching a graduate level course in simulation. Students taking this course work on a variety of systems and their choices typically run the gamut from personal computers to mainframes. With Knuth's advice in mind, one important objective of this course is for all students to write and use implementations of a good, minimal standard random number generator that will port to all systems. For reasons discussed later, this minimal standard is a multiplicative linear congruen tial generator [18. D. 101 with multiplier 16807 and should provide is the ability to generate random numbers. Certainly this is true in scientific computing where many years of experience has demonstrated the importance of access to a good random number generator. And in a wider sense, largely due to the encyclopedic efforts of Donald Knuth [18], there is now a realization that random number generation is a concept of fundamental importance in many different areas of computer science. Despite that, the widespread adoption of good. portable. industru standard software for ran-

Pseudo-random number generator

$$
Z_{i}=\left(a Z_{i-1}+c\right) \% m
$$

$Z_{0}=$ seed
a, c, and $m=$ carefully chosen constants
$\left\{Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, \ldots\right\}$
$k=$ period

Pseudo-random number generator

$$
Z_{i}=\left(a Z_{i-1}+c\right) \% m
$$

$Z_{0}=$ seed
a, c, and $m=$ carefully chosen constants
$\left\{Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, \ldots\right\}$
$k=$ period

Pseudo-random number generator

$$
Z_{i}=\left(a Z_{i-1}+c\right) \% m
$$ MUOH BETTER PRNGS OUT THERE.

$Z_{0}=$ seed
a, c, and $m=$ carefully chosen constants
$\left\{Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{k}, \ldots\right\}$
$k=$ period

What is a random variate?

-Bernoulli (discrete)
-Binomial (discrete)

- Geometric (discrete)
-Equilikely (discrete)
- Uniform (continuous)
- Normal or Gaussian (continuous)
-Exponential (continuous)

Bernoulli(p)

Two possible outcomes: "success" $(X=1)$ and failure ($X=0$).
$\operatorname{Pr}\{X=1\}=x$
$\operatorname{Pr}\{X=0\}=1-x$
Range $=[0,1]$

$$
p=0.8
$$

Bernoulli(p)

Two possible outcomes: "success" $(X=1)$ and failure ($X=0$).
$\operatorname{Pr}\{X=1\}=x$
$\operatorname{Pr}\{X=0\}=1-x$
Range $=[0,1]$

$$
p=0.8
$$

Equilikely(a,b)

Possible values are $\{a, a+1, a+2, \ldots, b\}$ Range $=[a, b]$

$$
\operatorname{Pr}\{X=i\}=?
$$

Binomial(\mathbf{n}, p)

Repeat a Bernoulli(p) experiment n times and count the number of successes.

What is the range of Binomial (n, p) ?

$$
\operatorname{Pr}\{X=x\}=?
$$

Geometric(p)

Repeat a Bernoulli(p) experiment until you have a first successes; count the number of failures before you see that success.
What is the range of Geometric(p)?

$$
\operatorname{Pr}\{X=x\}=?
$$

Uniform(a,b)

a = start
$b=$ end

$\mathrm{f}(\mathrm{x})=$ probability density function
$F(x)=$ cumulative distribution function

Uniform(a,b)

$$
f(x)=\frac{1}{b-a}, a<x<b
$$

$$
F(x)=\frac{x-a}{b-a}
$$

Normal(m,s)

$m=$ mean
$s=$ standard deviation
What is the range of Normal(m,s)?

Exponential(r)

$r=$ rate

The Tree-body Problem

The Tree-body Problem

What do you gain by simulating this?

The Tree-body Problem

What does the model need to capture?

The Tree-body Problem

M3

The Tree-body Problem

What defines each simulation experiment?

The Tree-body Problem

Where is the randomness in this model?

The M/M/1 Queue

What in the world is captured in this abstraction?

The M/M/1 Queue

What do you gain by simulating this?

The M/M/1 Queue

What do you gain by simulating this?

$L=\frac{\frac{\lambda}{\mu}}{1-\frac{\lambda}{\mu}}$

M/M/1

$W=\frac{1}{\mu-\lambda}$

Related Models

Related Models

Related Models

Aircraft Boarding

Aircraft Boarding

What do you gain by simulating this?

Aircraft Boarding

Where is the randomness in this model?

Aircraft Boarding

What do you learn from each simulation experiment?

