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A static model
Predicting profits for furniture sales

Time has no bearing on this model



A static model
Predicting profits for furniture sales

This one is on Moodle:
Spreadsheet simulation



What is …

•a random number generator?
•a pseudo-random number generator?

Why should we need randomness?



“Real” random numbers
There is entropy in nature. If you can identify a 
source of entropy, you can “mine” random 
numbers from it.

white noise



Computers are deterministic…
If computers are fully deterministic, you need to 
do some work to get them to give you random 
numbers…

In Linux, look to /dev/random for random 
numbers. (You cannot “control” them.)

https://en.wikipedia.org/wiki//dev/random


Pseudo-random number generators (PRNGs)
COMPUTING PRACTICES 

Edgar H. Sibley 
Panel Editor 

Practical and theoretical issues are presented concerning the design, 
implementation, and use of a good, minimal standard random number 
generator that will port to virtually all systems. 

RANDOM NUMBER GEUERATORS: 
GOOD ONES ARE HARD TO FIN 

STEPHEN K. PARK AND KEITH W. MILLER 

An important utility that digital computer systems 
should provide is the ability to generate random num- 
bers. Certainly this is true in scientific computing 
where many years of experience has demonstrated the 
importance of access to a good random number genera- 
tor. And in a wider sense, largely due to the ency- 
clopedic efforts of Donald Knuth [18], there is now a 
realization that random number generation is a concept 
of fundamental importance in many different areas of 
computer science. Despite that, the widespread adop- 
tion of good, portable, industry standard software for ran- 
dom number generation has proven to be an elusive 
goal. Many generators have been written, most of them. 
have demonstrably non-random characteristics, and 
some are embarrassingly bad. In fact, the current state 
of random number generation software is accurately 
described by Knuth [18, p. 1761 who advises “. . . look 
at the subroutine library of each computer installation 
in your organization, and replace the random number 
generators by good ones. Try to avoid being too shocked 
at what you find.” 

Knuth’s advice applies equally well to most recently 
published computer science textbooks, particularly 
those written for the undergraduate market. Indeed, 
during the preparation of this article we reviewed more 
than 50 computer science textbooks that contained soft- 
ware for at least one random number generator. Most of 
these generators are unsatisfactory. 

This article was motivated by practical software con.. 
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siderations developed over a period of several years 
while teaching a graduate level course in simulation. 
Students taking this course work on a variety of sys- 
tems and their choices typically run the gamut from 
personal computers to mainframes. With Knuth’s ad- 
vice in mind, one important objective of this course is 
for all students to write and use implementations of a 
good, minimal standard random number generator that 
will port to all systems. For reasons discussed later, this 
minimal standard is a multiplicative linear congruen- 
tial generator [18, p. lo] with multiplier 16807 and 
prime modulus P - 1. As it turns out, porting this 
random number generator (or any other for that matter) 
to a wide variety of systems is not as easy as it may 
seem. The issues involved are discussed later in this 
article. 

The body of this article is organized into four sec- 
tions. In the first, we present the rationale for our 
choice of a minimal standard generator. We believe 
that this is the generator that should always be used- 
unless one has access to a random number generator 
known to be better. In the second section we demon- 
strate how to implement the minimal standard in a 
high-level language on a variety of systems. The third 
section presents theoretical considerations (and imple- 
mentation details in support of the discussion in the 
previous sections. Finally, in the last section, we pre- 
sent selected examples of unsatisfactory generators that 
have either appeared in recently published (post-1980) 
computer science textbooks or are currently supplied 
by popular programming environments. 
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WHAT MAKES A PRNG 
“GOOD” ?



Pseudo-random number generator

Zi = (aZi-1 + c) % m

Z0 = seed
a, c, and m = carefully chosen constants

{Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk,…} 

k = period

LINEAR CONGRUENTIAL GENERATOR

LEHMER GENERATOR



Pseudo-random number generator

Zi = (aZi-1 + c) % m

Z0 = seed
a, c, and m = carefully chosen constants

{Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk,…} 

k = period

LINEAR CONGRUENTIAL GENERATOR

LEHMER GENERATOR

SAME SEED, SAME SEQUENCE



Pseudo-random number generator

Zi = (aZi-1 + c) % m

Z0 = seed
a, c, and m = carefully chosen constants

{Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk, Z0, Z1, Z2, …, Zk,…} 

k = period

LINEAR CONGRUENTIAL GENERATOR

LEHMER GENERATOR

THIS IS VERY BASIC. YOU CAN FIND 
MUCH BETTER PRNGS OUT THERE.



What is a random variate?
•Bernoulli (discrete)
•Binomial (discrete)
•Geometric (discrete)
•Equilikely (discrete)
•Uniform (continuous)
•Normal or Gaussian (continuous)
•Exponential (continuous)



Bernoulli(p)
Two possible outcomes: “success" (X=1) and 
failure (X=0).

Pr{X=1} = x
Pr{X=0} = 1-x
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p=0.8

0.5

Range = [0,1]



Bernoulli(p)
Two possible outcomes: “success" (X=1) and 
failure (X=0).

Pr{X=1} = x
Pr{X=0} = 1-x
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Range = [0,1]



Equilikely(a,b)
Possible values are {a, a+1, a+2, …, b}
Range = [a,b]

Pr{X=i} =  ?
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Binomial(n, p)
Repeat a Bernoulli(p) experiment n times and 
count the number of successes.
What is the range of Binomial(n,p)?
Pr{X=x} = ?

SSS…SFF… F
x n-x
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Geometric(p)
Repeat a Bernoulli(p) experiment until you have 
a first successes; count the number of failures 
before you see that success.
What is the range of Geometric(p)?
Pr{X=x} = ?
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Uniform(a,b)
a = start
b = end
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f(x) = probability density function
F(x) = cumulative distribution function



Uniform(a,b)

3 4 5 6 7 8

0.
15

0.
25

x

du
ni

f(x
, 3

, 8
)

f(x) = 1
b-a

F(x) = x-a
b-a

, a < x < b
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Normal(m,s)
m = mean
s = standard deviation
What is the range of 
Normal(m,s)?
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Exponential(r)
r = rate



The Tree-body Problem

M3M2

M1



The Tree-body Problem

M3M2

M1What do you gain by 
simulating this?



The Tree-body Problem

M3M2

M1What does the model 
need to capture?



The Tree-body Problem

M3M2

M1



The Tree-body Problem

M3M2

M1What defines each 
simulation experiment?



The Tree-body Problem

M3M2

M1Where is the randomness 
in this model?



The M/M/1 Queue

S

Wλ cust/sec
µ cust/sec

M/M/1

What in the world is 
captured in this 
abstraction?



The M/M/1 Queue

S

Wλ cust/sec
µ cust/sec

M/M/1

What do you gain by 
simulating this?



The M/M/1 Queue
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M/M/1

What do you gain by 
simulating this?
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Related Models
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µ cust/sec

G/G/1



Related Models
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Aircraft Boarding



Aircraft Boarding

What do you gain by simulating this?



Aircraft Boarding

Where is the randomness in this model?



Aircraft Boarding

What do you learn from each simulation experiment?


